Infinitesimally rigid polyhedra. I. Statics of frameworks
نویسندگان
چکیده
منابع مشابه
Infinitesimally Rigid Polyhedra. I. Statics of Frameworks
From the time of Cauchy, mathematicians have studied the motions of convex polyhedra, with the faces held rigid while changes are allowed in the dihedral angles. In the 1940s Alexandrov proved that, even with additional vertices along the natural edges, and with an arbitrary triangulation of the natural faces on these vertices, such polyhedra are infinitesimally rigid. In this paper the dual (a...
متن کاملStatics of Rigid Units Chain
The statics of one-dimensional rigid units chain subject to stretching force is analyzed. The potential energy of adjacent units interaction is assumed in the simple periodic form (harmonic in the small distortion limit). The position angles of subsequent units are given by the system of two iteration equations, one of them being irreversible. The derived system of equations exhibits interestin...
متن کاملStabilisation of infinitesimally rigid formations of multi-robot networks
This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date...
متن کاملCombining Globally Rigid Frameworks
Here it is shown how to combine two generically globally rigid bar frameworks in d-space to get another generically globally rigid framework. The construction is to identify d+1 vertices from each of the frameworks and erase one of the edges that they have in common.
متن کاملRigid Ball-Polyhedra in Euclidean 3-Space
A ball-polyhedron is the intersection with non-empty interior of finitely many (closed) unit balls in Euclidean 3-space. One can represent the boundary of a ballpolyhedron as the union of vertices, edges, and faces defined in a rather natural way. A ball-polyhedron is called a simple ball-polyhedron if at every vertex exactly three edges meet. Moreover, a ball-polyhedron is called a standard ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1984
ISSN: 0002-9947
DOI: 10.1090/s0002-9947-1984-0752486-6